人生倒計時
- 今日已經過去小時
- 這周已經過去天
- 本月已經過去天
- 今年已經過去個月
通用模型解題初中數學有哪幾個模型?
數學建模是使用數學模型解決實際問題。
對數學的要求其實不高。
我上大一的時候,連高等數學都沒學就去參賽,就能得獎。
可見數學是必需的,但最重要的是文字表達能力
回答者:抉擇415 - 童生 一級 3-13 14:48
數學模型
數學模型是對于現實世界的一個特定對象,一個特定目的,根據特有的內在規律,做出一些必要的假設,運用適當的數學工具,得到一個數學結構。
簡單地說:就是系統的某種特征的本質的數學表達式(或是用數學術語對部分現實世界的描述),即用數學式子(如函數、圖形、代數方程、微分方程、積分方程、差分方程等)來描述(表述、模擬)所研究的客觀對象或系統在某一方面的存在規律。
數學建模
數學建模是利用數學方法解決實際問題的一種實踐。即通過抽象、簡化、假設、引進變量等處理過程后,將實際問題用數學方式表達,建立起數學模型,然后運用先進的數學方法及計算機技術進行求解。
數學建模將各種知識綜合應用于解決實際問題中,是培養和提高學生應用所學知識分析問題、解決問題的能力的必備手段之一。
數學建模的一般方法和步驟
建立數學模型的方法和步驟并沒有一定的模式,但一個理想的模型應能反映系統的全部重要特征:模型的可靠性和模型的使用性。建模的一般方法:
機理分析:根據對現實對象特性的認識,分析其因果關系,找出反映內部機理的規律,所建立的模型常有明確的物理或現實意義。
測試分析方法:將研究對象視為一個“黑箱”系統,內部機理無法直接尋求,通過測量系統的輸入輸出數據,并以此為基礎運用統計分析方法,按照事先確定的準則在某一類模型中選出一個數據擬合得最好的模型。 測試分析方法也叫做系統辯識。
將這兩種方法結合起來使用,即用機理分析方法建立模型的結構,用系統測試方法來確定模型的參數,也是常用的建模方法。
在實際過程中用那一種方法建模主要是根據我們對研究對象的了解程度和建模目的來決定。機理分析法建模的具體步驟大致如下:
1、 實際問題通過抽象、簡化、假設,確定變量、參數;
2、 建立數學模型并數學、數值地求解、確定參數;
3、 用實際問題的實測數據等來檢驗該數學模型;
4、 符合實際,交付使用,從而可產生經濟、社會效益;不符合實際,重新建模。
數學模型的分類:
1、 按研究方法和對象的數學特征分:初等模型、幾何模型、優化模型、微分方程模型、圖論模型、邏輯模型、穩定性模型、統計模型等。
2、 按研究對象的實際領域(或所屬學科)分:人口模型、交通模型、環境模型、生態模型、生理模型、城鎮規劃模型、水資源模型、污染模型、經濟模型、社會模型等。
數學建模需要豐富的數學知識,涉及到高等數學,離散數學,線性代數,概率統計,復變函數等等 基本的數學知識
同時,還要有廣泛的興趣,較強的邏輯思維能力,以及語言表達能力等等
一般大學進行數學建模式從大二下學期開始,一般在九月份開始競賽,一般三天時間,三到四人一組,合作完成!!!
數學建模做題技巧
一. 數學的重要性:
學了這么多年的書,感覺最有用的就是數學課了,相信還是有很多人和我一樣的想法的
。 大家回想一下:有什么課自始至終都用到?我想了一下只有數學了,當然還有英語。
特別到了大學,學信號處理和通信方面的課時,更是感到了數學課的重要性。計算機:
數據結構,編程算法....哪個不需要數學知識和思想。有這樣的說法,數學系的人學計
算機才是最牛的。信號與系統:這個變換那個變換的。通信:此編碼彼編碼的。數字圖
像與模式識別:這個概率論和數理統計到處都是。線性代數和矩陣論也是經常出現。
二. 數學的學習方法:
最重要的是遇到問題首先不畏懼,然后知道類似的問題別人是如何處理,我們是否可以
借鑒,然后再比較我們的問題和已有的問題有何異同,已有的方法有什么不足,我們應
從哪里著手考慮新方法。思考路線比具體推導更重要。數學并非說得越玄乎越顯水平。
真正的理解在于抓住實質,"如果你還覺得某個東西很難、很繁、很難記住,說明你還沉
迷于細節,沒有抓住實質,抓住了實質,一切都是簡單的。"這是概率之父Kolmogorov的
名言。我們平時在學習數學時,也時刻問自己,能不能向一個外行講清楚這是怎么回事
,如果不能,說明我們自己還沒有真正理解。數學推導的功夫應該是在課下通過大量的
練習得到的,在課下花的時間要遠大于課上的時間。
三. 數學軟件介紹:
在當今30多個數學類(為區別于文字處理和作圖類而加的修飾詞)科技應用軟件中,就
軟件數學處理的原始內核而言,可分為兩大類。一類是數值計算(Number Crunching)
)型軟件,如Matlab, Xmath,MLAB等。這類軟件對大批數據具有較強的管理、計算和
可視化能力,運行效率高。另一類是數學分析(Math Analysis)型軟件,如Mathemati
ca、Maple,Macsyma等。它們以符號計算見長,并可得到解析符號解和任意精度解,但
處理大量量數據時運行效率較低。經過多年的國際競爭,MATLAB已經占據了數值型軟件
市場的主導地位,處于其后的是Xmath;而Maple,Mathematica,Macsyma位居符號軟件的
前三名(見IEEE Spectrum)。 在國際流行的科技應用軟件中,Mathcad 別具特色。該
軟件的開發商Mathsoft公司一開始就把面向教學和辦公作為Mathcad的市場目標。在對待
數值計算、符號分析、文字處理、圖形能力的開發商,不以專業水準為追求,而盡力集
各種功能于一體。MathWorks公司順應多功能需求之潮流,在其卓越數值計算和圖視能力
的基礎商,又率先在專業水平上開拓其符號計算,文字處理,可視化建模仿真和實時控
制能力,精心營造適合多學科、多部門要求的新一代科技應用軟件MATLAB。
對電子系同學最常用的軟件而且基本上唯一使用的數學軟件就是matlab了。Matlab 5.3
版本(最新版本6.0版)完全安裝,包括幫助、以及各種工具箱一共竟需要1G多硬盤空間
。當然,這一個G的容量并不是被各種垃圾文件所充斥,相反的,它是由無數在Matlab系
統上運行的函數文件所占據。由此可以看出Matlab的功能是多么的全面。1984年,計算
數學家Steve Bangert、Steve Kleiman、John Little、Cleve Morer在原來 FORTRAN程
序的基礎上開發了一個解決線性系統計算問題的C語言程序,他們給它起了個響亮的名字
Matlab(Matrix Laboratory)。從此以后,Matlab系統便一發而不可收拾,成千上萬的軟
件工程師、計算科學家、和各種應用領域的科技工作人員加入了Matlab的開發者的行列
。他們把各自科研、應用領域中的常用算法用Matlab系統提供的編程語言做成程序集,
于是就產生了Matlab的特色之一:"工具箱系統"(Toolbox)。在Matlab5.3 中大約有幾十
個工具箱,其中包括通信,信號系統分析、離散信號分析、優化、偏微分方程、小波變
換、地圖、財經、電力系統、神經網絡,數值計算等等。工具箱中每一個函數都是采用
了該領域中最先進的高效算法,無數這樣的函數文本文件組成了Matlab這個巨無霸,由
此可見,Matlab對于解決工程問題是極其具有優越性的。是我們電子系學生的最愛。上
面介紹了Matlab的主要特色之一:工具箱。下面來談談它的另一個特色,就是與其他語
言和編譯器之間的接口。這個問題一直是關于Matlab的最熱門的話題。原因很簡單,1.
Matlab如此全面高效的算法和功能都是建立在Matlab提供的平臺上才能運行,這樣限制
了這些程序的使用范圍,即如果想應用這些程序,你首先必需在你的計算機上安裝一個
多達幾百兆的Matlab,給使用帶來了不便。另外,由于Matlab采用的是逐行解釋的方式
來執行代碼,因此運行速度比編譯為exe 的二進制文件要慢,因此,利用編譯器,把m文
件變為二進制的exe或dll文件,會大大縮短計算時間. 盡管Matlab是一個完善的系統,
但畢竟術業有專攻,各種語言的可視化編程環境(如VC,C++Builder,Delphi等)在用戶
界面設計和其他系統功能方面具有Matlab不能比擬的快捷和高效,因此,如何把Matlab
強大的數值計算功能與可視編程集成環境IDE結合起來,開發用戶操作方便、計算功能完
備、運行快捷的應用程序便成為程序開發者的最大愿望。Matlab中包含了大量的矩陣運
算、數值運算函數、圖形操作函數、用戶圖形界面函數等等,用他可以象C語言一樣書寫
函數流程,而且開發WIN圖形界面的用戶程序。Matlab強大的功能、方便的操作給它贏得
了世界上最流行的數學軟件的桂冠。難怪在網上大家奔走相告"出國前一定要把Matlab學
好"。
四. 其他數學軟件簡介(也算開開眼界盡管基本上不用(除了第一個外)):
1. Matcom:Matcom是MathTools開發的一個m文件解釋器(即將Matlab中的編程語
言解
釋為C語言),不僅可以把m文件編譯為可以獨立執行的exe或dll文件,而且可以自動產
生C源代碼,供其他高級語言編譯器使用。Matcom所實現的在C語言中直接書寫類似于ma
tlab語句的功能,帶來了以下幾個明顯的優點:一,是利用Matcom編制的程序可以在任
何不安裝 Matlab系統的計算機上運行; 二是運行速度比m文件快了數倍;三是實現了Ma
tlab強大的計算功能與各種C編譯器界面設計 的完美組合。我現在最喜歡用的就是在vc
上作界面來方便用戶操作,用Matcom庫實現算法計算,這樣相得益彰,用這種方法編成
的程序,操作方便簡潔,計算圖形功能強大,速度快。
2. Mathmatica:最令人著迷的是它的完美的符號運算功能。所謂符號運算是指它
所處
理的對象不僅僅是常見的數字(如12或3.14),而是一些帶有代數符號的表達式,我們
在代數中曾經學過運用代數的運算規則,對一個含有符號的表達式進行恒等變換,一個
函數就是一種規則或者說映射,比如定義如下一個規則,我們就可以運用這法則將下式
變換。而Mathematica正是具有這種類似人類思維的功能,它能不斷學會并記憶各種變化
規則,并把這些各式各樣的變化應用到各種表達式上,無論形式多么復雜,總能得到我
們想得到的帶有代數符號的結果。而在C語言或其他編程語言中,對于一個符號,必須先
聲明,然后賦值才能使用。因此它所表達的含意是有限的,而Mathematica完全拋開了這
種限制,一個符號可以表示任意對象,沒有類型限制,真正實現了"代數"中的"代"字。
Mathematica象一個不知疲倦的公式推導家,它能在一秒鐘之內將一個復雜的函數關系復
合上萬次,它能在各種復雜表達式形式中找到最簡單的。Mathematica對于大一、大二的
同學可能是一個福音,對于大家在高等數學、線性代數中常碰到的對表達式求極限、微
分、定積分、不定積分、級數、向量代數等內容在Mathematica都有內部函數來直接計算
結果。當然,希望大家還是自己動手練一練公式推導的基本功,把Mathematica當作一個
檢驗工具是無可厚非。Mathematica4.0中, 系統函數涵蓋了微積分、線性代數、概率、
幾何、圖論、組合數學、數論數學、特殊函數等絕大多數常用數學分支。
3. Mathcad 8.0,Maple 5: 著名的符號運算數學軟件,與Mathematica 類似,內
存管
理較好,SAS 6.12 統計學專業軟件,壓縮文件100多M(最權威的統計軟件)。
4. 其他:SPSS 8.0 社會科學統計軟件包;Lindo/Lingo 50線性、非線性規劃軟件
;A
nsys 5.4 權威的有限元法(FEM)計算軟件,安裝文件約200~300M ;Algo 有限元法軟
件包;Statistics 統計軟件 ;Datafit 數值擬合專業軟件 ;Origin 6.0 微軟的數據
分析繪圖軟件,可以與Excel數據庫通訊;Netlib 網絡并行計算庫 ;Isoft 電磁仿真軟
件 ;Auto 非線性動力系統計算軟件 ;Flexpde 2.10 求解偏微分方程的數值軟件;Te
cplot 8.0流速與值線流體力學 ;RATS 數值分析軟件。
一、是數學建模競賽
數學建模競賽就是這樣。它名曰數學,當然要用到數學知識,但卻與以往所說的那種數
學競賽(那種純數學競賽)不同。它要用到計算機,甚至離不開計算機,但卻不是純粹的
計算機競賽,它涉及物理,化學,生物,電子,農業,管理等各學科,各領域的知識,
但也不是這些學科領域里的純知識競賽。它涉及各學科,各領域,但又不受任何一個具
體的學科,領域的局限。它要用到各方面的綜合的知識,但還不限此。選手們不只是要
有各方面的知識,還要有駕域這些知識,應用這些知識處理實際問題的能力。知識是無
止境的,你還必須有善于獲得新的知識的能力。總之,數學建模競賽,即要比賽各方面
的綜合知識,也比賽各方面的綜合能力。它的特點就是綜合,它的優點也是綜合。在這
個意義上看,它與任何一個學科領域內的知識競賽都不相同的特點就是不純,它的優點
也就是不純,綜合就是不純。純數學競賽,如中學生的國際數學奧林匹克競賽,或美國
大學生的普特南數學競賽,已經有很長的歷史,也為大家所熟悉。特別是近若干年來我
國選手在國際數學奧林匹克競賽中年年取得好成績,更使這項競賽在我國有很高的知名
度,在全國各地的質量教高的中學中廣泛開展。純數學競賽主要考核選手對數學基礎知
識的掌握情況邏輯推理及證明的能力和技巧思維是否敏捷,計算能力的強弱等。試題都
是純數學問題,考試方式是閉卷考試。參賽學生在規定的時間(一般每次為三小時)內獨
立做題,不準交頭接耳相互討論,不準看任何書籍和參考資料,不準用計算機(器) 。考
題都有標準答案。當然,選手的解答方法可以與標準答案不同,但其解答方法的正確與
否也是絕對的,特別是計算題的得數一定要與標準答案相同。考試結果,對每個選手的
答案給出分數,按分數高低來判定優劣。 盡管也要對參賽的團體(代表一個國家,地區
或學校)計算團體總分,但這個團體總分也是將每個團體的選手得分加起來得到的,在比
賽過程中同一團體的選手們絕對不能互相幫助。因此,這樣的競賽從本質上說是個人賽
而不相幫助。因此,這樣的競賽從本質上說是個人賽而不是團體賽。團體要獲勝主要靠
每名選手個自的水平高低而不存在互相配合的問題(當然在訓練過程中可以互相幫助)。
這樣的競賽,對于吸引青年人熱愛數學從而走上數學研究的道路,對于培養數學家和數
學專門人才,起了很大的作用。
隨著社會的發展,數學在社會各領域中的應用越來越廣泛,作用越來越大,不但運用于
自然科學各個領域,各學科,而且滲透到經濟,軍事,管理以至于社會科學和社會活動
的各個領域。但是,社會對數學的需求并不只是需要在各部門中從事實際工作的人善于
運用數學知識及數學大思維放法來解決他們每天面臨的大量的實際問題,取得經濟效益
和社會效益。他們不是為了應用數學知識而尋找實際問題(就象在學校里做數學應用題)
,而是為了解決實際問題而需要用到數學。而且不止是要用到數學,很可能還要用到別
的學科,領域的知識,要用到工作經驗和常識。特別是在現代社會,要真正解決一個實
際問題幾乎都離不開計算機。可以這樣說,在實際工作中遇到的問題,完全純粹的只用
現成的數學知識就能解決的問題幾乎是沒有的。你所能遇到的都是數學和其他東西混雜
在一起的問題,不是"干凈的"數學,而是"臟"的數學。其中的數學奧妙不是明擺在那里
等著你去解決,而是暗藏在深處等著你去發現。也就是說,你要對復雜的問題進行分析
,發現其中的可用數學語來描述的關系或規律,把這個實際問題化成一個數學問題,這
就稱為數學模型,建立數學模型的這個過程就稱為數學建模。模型這個詞對我們來說并
不陌生,它可以說是對某種事物的一種仿制品。比如飛機模型,就是模仿飛機造出來的
。既然是仿造,就不是真的,只能是"假冒",但不能是"偽劣",必須真實地反映所模仿
的對象的某一方面的屬性。如果只是模仿飛機的模樣,這樣的飛機模型只要看起像飛機
就行了,可以擺在展覽館供人參觀,照相,但不能飛。如果要模仿飛機的飛行原理,就
得造一個能飛起來的飛機模型,比如航空模型比賽的作品,它在空氣中的飛行原理與飛
機有相同之處。但當然不像飛機那樣靠燒燃料來飛行,外觀上也不必那么像飛機,可見
,模型所模仿的都只是真實事物的某一方面的屬性。而數學模型,就是用數學語言(可能
包括數學公式)去描述和模仿實際問題中的數量關系,空間形式等。這種模仿當然是近似
的,但又要盡可能的逼真。實際問題中的許多因素,在建立數學模型時你不可能,也沒
有必要把它們毫無遺漏地全部加以考慮,只能考慮其中的最主要的因素,舍棄其中的次
要因素,數學模型建立起來后,實際問題化成數學問題,就可以用數學工具,數學方法
去解答。如果有現成的數學工具當然好。如果沒有現成的數學工具,就促使數學家們(也
包括建立數學模型的人)尋找和發展出新的數學工具去解決它,這又推動了數學本身的發
展。例如,開普勒由行星運動的觀測數據總結出開普勒三定理(這就是行星運行的數學模
型),牛頓試圖用自己發現的力學定理去解釋它,但當時的數學工具是不夠用的,這使了
微積分的發明。求解數學模型,除了用到數學推理以外,通常還要處理大量數據,進行
大量計算。這在電子計算機發明之前是很難實現的。因此,很多數學模型,盡管從數學
理論上解決了,但由于計算量太大而沒法得到有用的結果,還是只有束之高閣。而計算
機的出現和迅速發展,給用數學模型解決實際問題打開了廣闊的道路。而在現在,要真
正解決一個實際問題,離了計算機幾乎是不行的。數學模型建立起來了,也用數學方法
或數據方法求出了解答,是不是就萬事大吉了呢?不是。既然數學模型只能近似地反映實
際問題中的關系和規律,到底反應的好不好,還需要接受檢驗。如果數學模型建立的不
好,如果沒有正確地描述所給的實際問題,數學解答再正確也是沒有用的。因此,在得
出數學解答之后還要讓所得的結論接受實際的考察,看它是否合理,是否可行。如果不
符合實際,還應設法找出原因,修改原來的模型,重新求解和檢驗,直到比較合理可行
,才算是得到一個解答,可以先付諸實施,但是,十全十美的答案是沒有的,已得到的
答案一定還有改進的余地,還可以根據實際情況,或者繼續研究和改進;或者暫停告一段
落,待將來有新的情況和要求后再作該進。
上面所說的建立數學模型來解決問題的過程,是各行各業各個領域大量需要的,也是我
們的學生在走上工作單位后常常要做的工作。做這樣的事情,所需要的遠不只是數學知
識和解數學題的能力,而需要多方面的綜合能力。社會對具備這種能力的人的需求,比
對數學專門人才的需求要多的多。因此,在學校里就應當努力陪養和提高學生在這方面
的能力。當然有多種形式來達到這個目的。比如開設數學模型方面的課程;讓學生多接觸
實際工作,得到鍛煉,獲得知識及其他各方面的能力)去參與解決問題的全過程。這些實
際問題并不限于某一方面,可以涉及非常廣泛的,并不固定的范圍。這樣來促進應用人
才的培養。
二、數學模型的基礎
1. 數學模型的定義
現在數學模型還沒有一個統一的準確的定義,因為站在不同: 的角度可以有不同的定義
。不過我們可以給出如下定義。: "數學模型是關于部分現實世界和為一種特殊目的而作
的一個抽象的、簡化的結構。" : 具體來說,數學模型就是為了某種目的,用字母、數
學及其它:數學符號建立起來的等式或不等式以及圖表、圖象、框圖等描述客觀事物的特
征及其內在聯系的數學結構表達式。
2.建立數學模型的方法和步驟
第一、 模型準備 (問題的提出與分析)
首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特
征。
第二、 模型假設與符號說明
根據對象的特征和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設
,是建模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法
欠佳的行為,: 所以高超的建模者能充分發揮想象力、洞察力和判斷力 ,善于辨別主次
,而且為了使處理方法簡單,應盡量使問題線性化、均勻化。
第三、 模型的建立與求解
通過對問題的分析和模型假設后建立數學模型(模型運用數學符號和數學語言來描述)
,并過設計算法、運用計算機實現等途徑(根據模型的特征和要求確定)求解模型!此
過程是整:個數模過程的最重要部分,需慎重對待!
第四、 型的檢驗
即通過問題所提供的數據或相對于實際生活中的情況對模型的合理性、準確性等進行判
別模型的優劣!可通過計算機模擬等手段來完成!
第五、 模型的完善與推廣
此步驟可根據建模時具體情況而定!
關于建模的步驟并不一定必須按照以上幾步進行,有興趣的同仁可參考建模的相關書籍
。
三、數學建模參考資料:
1、《數學模型基礎》 王樹禾 中國科學技術大學出版社 1996
2、《數學模型》 譚永基,俞文 復旦大學出版社 1997
3、《數學建模競賽教程》 李尚志 江蘇教育出版社 1996
這些書均可在圖書館借到或在九章書店買到。其他方面的書也很多,有足夠時間可以去
翻翻。全國大學生數學建模競賽的有關信息,可在Internet上中國工業與應用數學學業
會 (CSIAM)的主頁內瀏覽,網址為:。數學建模比賽每年
的9月下旬舉行,每年6月份報名,三人組成一個參賽隊。欲參加比賽的同學應該到數學
系旁聽數學模型課或者選修公共選修課"數學模型"。
《吉米多維奇數學分析習題集》
本書只適合超級大牛同學做。圖書館有借和海淀圖書城的九章數學書店有售。
《數學分析中的典型問題與方法》
裴禮文著,高教出版社。本書可謂寶典級的圣書。適合一般牛的同學。圖書館不多,九
章書店有售。
《大學生數學競賽試題解析選編》
第二版,李心燦等編,高教出版社。凡是科協課外小組的同學要求人手一本。里面收集
了北京市大學生數學競賽的歷年真題,比較好,對于水平中等及中等以上的同學均有意
義。九章數學書店有售。
《高等數學復習題解與指導》
陳文燈著,上下兩本,北京理工大學出版社:該書講解十分詳盡,對于各類水平的同學
均有很大的幫助。嘔血推薦!!!九章書店有售。
《數學復習指南》
理工類,陳文燈等著。該書高數內容與上本書基本一致。但該書還有線性代數,概率論
等部分,非常全面。圖書館有借。各大書店均有售。適合所有水平的同學。
《高等數學解題過程的分析和研究》
錢昌本著。該書主要介紹高等數學的思維方法。例題很有啟發性。圖書館有借。九章書
店有售。
從常微分方程開始,數學課就變成沒底的東西,每一個標題做下去都是數學研究里面龐
大的一塊。對于一門基本課程應該講些什么也始終討論不斷。下面開始說參考書,毫無
疑問,我們還是得從我們強大的北方鄰國說起。
《常微分方程講義》
彼得羅夫斯基。在20世紀數學史上,這位前莫斯科大學校長占據著一個非常特殊的地位
。從學術上說,他在偏微那一塊有非常好的工作,五十年代谷先生去蘇聯讀學位的時候
還參加過他主持的討論班。他從三十年代末開始就轉向行政工作。在他早年的學生里面
有許多后來蘇聯的高官,所以他就利用和這些昔日學生的關系為蘇聯數學界構筑了一個
保護傘,他這本書在相當長的時期里是標準教材。
《常微分方程》
龐特里亞金。龐特里亞金院士十四歲時因化學實驗事故雙目失明,在母親的鼓勵和幫助
下,他以驚人的毅力走上了數學道路,別的不說,光看看他給后人留下的"連續群","最
佳過程的數學理論",你就不得不對他佩服得五體投地,有六體也投 下來了。他的這本
課本就是李迅經先生他們翻譯的。此書影響過很多我們的老師輩的人物。
數學建模
鴨子過河
設河邊點O的正對岸為點A,河寬OA=h(圖1.1),水流速度為a,有一鴨子從點A游向點O,設鴨子(在靜水中)的游速為b(ba),且鴨子游動的方向始終朝著點O。①設h=10m,a=1m/s,b=2m/s,用數值法求渡河所需時間、任意時刻鴨子的位置及游動曲線。②建立任意時刻鴨子的位置和鴨子游動的數學模型,并求其解析解。
1.模型的假設
為了使問題確定和簡化,實際上已經作了如下假設:
①假設河寬固定,設為h,且兩岸為平行直線;
②鴨子游速為b及水流速度a均為常數;
③鴨子游動的方向始終指向O。
2.模型的建立和求解
取O為坐標原點,河岸朝順水方向為x軸,y軸指向對岸,如圖1.1所示。
設時刻t鴨子位于點P(x,y),設起點坐標(x,y)=(0,h),終點坐標(0,0),設θ為鴨子速度方向與x軸正向間的夾角,
,
, 于是鴨子游動的跡線滿足:
x(0)=0,y(0)=h
(1)模型的數值解
實際上,從上述方程不能求得x(t),y(t)的解析式,但在參數確定的情況下,可以通過數值解得到任意時刻鴨子的位置。設x=(x(1),x(2))T,x(1)=x,x(2)=y,編寫如下的函數M文件:
%鴨子過河、渡河
function dx=duhe(t,x) %建立名為duhe的函數M文件
a=1;b=2;
s=sqrt(x(1)^2+x(2)^2);
dx=[a-b*x(1)/s;-b*x(2)/s];%以向量形式表示方程組
在編寫運行程序時,須設定時間t的起點及終點步長,可大致估計靜水中的渡河時間,并作試探。(可見,鴨子的渡河時間在6.5~7s之間)
ts=0:0.5:7;
x0=[0,10]; %x、y的初始值
[t,x]=ode45(@duhe,ts,x0); %調用ode45計算
[t,x] %輸出t,x(t),y(t)
plot(t,x),grid %按照數值輸出作x(t),y(t)的圖形
gtext('x(t)'),gtext('y(t)'),pause %利用鼠標確定字符串位置
plot(x(:,1),x(:,2)),grid, %作y(t)的圖形
gtext('x'),gtext('y')
得到的數值結果x(t),y(t)為鴨子的位置列入表1.1。x(t),y(t)及y(x)的圖形見圖1.2(a)和1.2(b)。
表1.1 h=10,a=1,b=2時的數值解
t x(t) y(t) t x(t) y(t)
0.0000 0.0000 10.0000 4.0000 1.8663 2.4336
0.5000 0.4741 9.0004 4.5000 1.7062 1.6834
1.0000 0.8929 8.0039 5.0000 1.4436 1.0381
1.5000 1.2503 7.0143 5.5000 1.0860 0.5257
2.0000 1.5396 6.0370 6.0000 0.6507 0.1759
2.5000 1.7535 5.0791 6.5000 0.1660 0.0111
3.0000 1.8843 4.1501 7.0000 0.0000 0.0000
3.5000 1.9242 3.2628
圖1.2(a) 和 圖1.2(b)
(2)模型的解析解
為了得到更精確的運動軌跡,還必須對模型作進一步分析以得到其解析解。鴨子運動速度為:
故有:
由此得到微分方程:
,x(h)=0
求解此齊次微分方程得到鴨子游動的軌跡方程為:
,0≤y≤h(具體求解參見附錄(1))
采用下列Matlab程序,我們可以畫出鴨子運動的軌跡(圖1.3)。
h=10;a=1;b=2;y=h:-0.5:0;x=h/2*((y./h).^(1-a/b)-(y./h).^(1+a/b));
plot(x,y,'bO-')
legend('duck')
xlabel('X');ylabel('Y');
圖1.3 鴨子運動的軌跡
鴨子游動曲線軌跡的弧長可以用公式 求出,也可以用數值方法求解。
3.對解以及問題的進一步討論
①關于解可以作進一步分析:如果b<a,由上述軌跡方程當y→0,得到x→∞。因此,這中情況下鴨子是不可能到達對岸的,這與鴨子運動的力學分析結果是一致的。
syms y;limit(10/2*(((y/10)^(1-2))-((y/10)^(1+2))),y,0,'left')
syms y;limit(10/2*(((y/10)^(1-2))-((y/10)^(1+2))),y,0,'right')
結果分別為-Inf和Inf。
②很自然地,還可以探討如下問題:如果鴨子上岸的地點不超過和對岸下游一定位置(比如與正對岸距離為l),鴨子的速度大小與方向不變,問鴨子以怎樣的游動方向才能以最少的時間到達上岸地點?鴨子能夠按要求到達對岸速度應滿足什么條件?如果水流速度變化,進一步可研究2003年全國數學建模競賽D題:強渡長江。
4.建模過程總結
這是一個微分方程應用題,整個解題過程已經包含了建立數學模型的基本內容,即
①根據問題背景和建模問題作出必要的簡化假設——鴨子速度和水流速度均為常數;
②用字母和符號表示有關變量(如鴨子速度、水流速度、時間及位置坐標等);
③利用相應的物理(或其他)規律——牛頓力學有關規律,列出微分方程;
④求解微分方程得到鴨子游動軌跡曲線解析解,此處我們還采用了數值解法得到了任意時刻鴨子的位置(坐標);
⑤解的討論及推廣應用等。
參考文獻
[1] 李志林,歐宜貴,數學建模及典型案例分析,北京:化學工業出版社,2006.12
[2] 同濟大學應用數學系,高等數學(本科少學時類型)上冊(第二版),北京:高等教育出版社,2001
附錄:
(1)鴨子游動軌跡方程的求解
將得到的微分方程 化成齊次方程 的形式,得
(1-1)
令 ,則x=yu, ,代入上述方程,得
(1-2)
化簡并分離變量得
(1-3)
兩端積分,得
(其中C1為常數) (1-4)
即
(1-5)
將 代入上式,得
(1-6)
由x(h)=0將y=h,x=0代入上式,得 ,求得 。
將 代入式(1-5),得
(1-7)
將上式平方并化簡,得
(1-8)
求得
(1-9)
將 代入上式,得
,0≤y≤h(1-10)
參考文獻圖書館索取號及參考頁碼
[1] O141.4/L.Z.L Page2-4
[2] 齊次方程 Page339-344
另外還有一篇,我通過郵件發給你。
數學建模的思路是什么?
說就是把實際問題用數學語言抽象概括,從數學角度來反映或近似地反映實際問題,得出的關于實際問題的數學描述。其形式是多樣的,可以是方程(組)、不等式、函數、幾何圖形等等。
在數學建模中常用思想和方法:類比法、二分法、量綱分析法、差分法、變分法、圖論法、層次分析法、數據擬合法、回歸分析法、數學規劃、機理分析、排隊方法、對策方法、決策方法、模糊評判方法、時間序列方法、灰色理論方法、現代優化算法。
模型準備
了解問題的實際背景,明確其實際意義,掌握對象的各種信息。以數學思想來包容問題的精髓,數學思路貫穿問題的全過程,進而用數學語言來描述問題。要求符合數學理論,符合數學習慣,清晰準確。
根據實際對象的特征和建模的目的,對問題進行必要的簡化,并用精確的語言提出一些恰當的假設。在假設的基礎上,利用適當的數學工具來刻劃各變量常量之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具)。
數學建模實際應用題求解!
數學建模論文范文--利用數學建模解數學應用題
數學建模隨著人類的進步,科技的發展和社會的日趨數字化,應用領域越來越廣泛,人們身邊的數學內容越來越豐富。強調數學應用及培養應用數學意識對推動素質教育的實施意義十分巨大。數學建模在數學教育中的地位被提到了新的高度,通過數學建模解數學應用題,提高學生的綜合素質。本文將結合數學應用題的特點,把怎樣利用數學建模解好數學應用問題進行剖析,希望得到同仁的幫助和指正。
一、數學應用題的特點
我們常把來源于客觀世界的實際,具有實際意義或實際背景,要通過數學建模的方法將問題轉化為數學形式表示,從而獲得解決的一類數學問題叫做數學應用題。數學應用題具有如下特點:
第一、數學應用題的本身具有實際意義或實際背景。這里的實際是指生產實際、社會實際、生活實際等現實世界的各個方面的實際。如與課本知識密切聯系的源于實際生活的應用題;與模向學科知識網絡交匯點有聯系的應用題;與現代科技發展、社會市場經濟、環境保護、實事政治等有關的應用題等。
第二、數學應用題的求解需要采用數學建模的方法,使所求問題數學化,即將問題轉化成數學形式來表示后再求解。
第三、數學應用題涉及的知識點多。是對綜合運用數學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關,很難將問題正確解答。
第四、數學應用題的命題沒有固定的模式或類別。往往是一種新穎的實際背景,難于進行題型模式訓練,用“題海戰術”無法解決變化多端的實際問題。必須依靠真實的能力來解題,對綜合能力的考查更具真實、有效性。因此它具有廣闊的發展空間和潛力。
二、數學應用題如何建模
建立數學模型是解數學應用題的關鍵,如何建立數學模型可分為以下幾個層次:
第一層次:直接建模。
根據題設條件,套用現成的數學公式、定理等數學模型,注解圖為:
將題材設條件翻譯
成數學表示形式
應用題 審題 題設條件代入數學模型 求解
選定可直接運用的
數學模型
第二層次:直接建模。可利用現成的數學模型,但必須概括這個數學模型,對應用題進行分析,然后確定解題所需要的具體數學模型或數學模型中所需數學量需進一步求出,然后才能使用現有數學模型。
第三層次:多重建模。對復雜的關系進行提煉加工,忽略次要因素,建立若干個數學模型方能解決問題。
第四層次:假設建模。要進行分析、加工和作出假設,然后才能建立數學模型。如研究十字路口車流量問題,假設車流平穩,沒有突發事件等才能建模。
三、建立數學模型應具備的能力
從實際問題中建立數學模型,解決數學問題從而解決實際問題,這一數學全過程的教學關鍵是建立數學模型,數學建模能力的強弱,直接關系到數學應用題的解題質量,同時也體現一個學生的綜合能力。
3.1提高分析、理解、閱讀能力。
閱讀理解能力是數學建模的前提,數學應用題一般都創設一個新的背景,也針對問題本身使用一些專門術語,并給出即時定義。如1999年高考題第22題給出冷軋鋼帶的過程敘述,給出了“減薄率”這一專門術語,并給出了即時定義,能否深刻理解,反映了自身綜合素質,這種理解能力直接影響數學建模質量。
3.2強化將文字語言敘述轉譯成數學符號語言的能力。
將數學應用題中所有表示數量關系的文字、圖象語言翻譯成數學符號語言即數、式子、方程、不等式、函數等,這種譯釋能力是數學建成模的基礎性工作。
例如:一種產品原來的成本為a元,在今后幾年內,計劃使成本平均每一年比上一年降低p%,經過五年后的成本為多少?
將題中給出的文字翻譯成符號語言,成本y=a(1-p%)5
3.3增強選擇數學模型的能力。
選擇數學模型是數學能力的反映。數學模型的建立有多種方法,怎樣選擇一個最佳的模型,體現數學能力的強弱。建立數學模型主要涉及到方程、函數、不等式、數列通項公式、求和公式、曲線方程等類型。結合教學內容,以函數建模為例,以下實際問題所選擇的數學模型列表:
函數建模類型 實際問題
一次函數 成本、利潤、銷售收入等
二次函數 優化問題、用料最省問題、造價最低、利潤最大等
冪函數、指數函數、對數函數 細胞分裂、生物繁殖等
三角函數 測量、交流量、力學問題等
3.4加強數學運算能力。
數學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數學運算推理能力是使數學建模正確求解的關鍵所在,忽視運算能力,特別是計算能力的培養,只重視推理過程,不重視計算過程的做法是不可取的。
利用數學建模解數學應用題對于多角度、多層次、多側面思考問題,培養學生發散思維能力是很有益的,是提高學生素質,進行素質教育的一條有效途徑。同時數學建模的應用也是科學實踐,有利于實踐能力的培養,是實施素質教育所必須的,需要引起教育工作者的足夠重視。
加強高中數學建模教學培養學生的創新能力
摘要:通過對高中數學新教材的教學,結合新教材的編寫特點和高中研究性學習的開展,對如何加強高中數學建模教學,培養學生的創新能力方面進行探索。
關鍵詞:創新能力;數學建模;研究性學習。
《全日制普通高級中學數學教學大綱(試驗修訂版)》對學生提出新的教學要求,要求學生:
(1)學會提出問題和明確探究方向;
(2)體驗數學活動的過程;
(3)培養創新精神和應用能力。
其中,創新意識與實踐能力是新大綱中最突出的特點之一,數學學習不僅要在數學基礎知識,基本技能和思維能力,運算能力,空間想象能力等方面得到訓練和提高,而且在應用數學分析和解決實際問題的能力方面同樣需要得到訓練和提高,而培養學生的分析和解決實際問題的能力僅僅靠課堂教學是不夠的,必須要有實踐、培養學生的創新意識和實踐能力是數學教學的一個重要目的和一條基本原則,要使學生學會提出問題并明確探究方向,能夠運用已有的知識進行交流,并將實際問題抽象為數學問題,就必須建立數學模型,從而形成比較完整的數學知識結構。
數學模型是數學知識與數學應用的橋梁,研究和學習數學模型,能幫助學生探索數學的應用,產生對數學學習的興趣,培養學生的創新意識和實踐能力,加強數學建模教學與學習對學生的智力開發具有深遠的意義,現就如何加強高中數學建模教學談幾點體會。
一.要重視各章前問題的教學,使學生明白建立數學模型的實際意義。
教材的每一章都由一個有關的實際問題引入,可直接告訴學生,學了本章的教學內容及方法后,這個實際問題就能用數學模型得到解決,這樣,學生就會產生創新意識,對新數學模型的渴求,實踐意識,學完要在實踐中試一試。
如新教材“三角函數”章前提出:有一塊以O點為圓心的半圓形空地,要在這塊空地上劃出一個內接矩形ABCD辟為綠冊,使其冊邊AD落在半圓的直徑上,另兩點BC落在半圓的圓周上,已知半圓的半徑長為a,如何選擇關于點O對稱的點A、D的位置,可以使矩形面積最大?
這是培養創新意識及實踐能力的好時機要注意引導,對所考察的實際問題進行抽象分析,建立相應的數學模型,并通過新舊兩種思路方法,提出新知識,激發學生的知欲,如不可挫傷學生的積極性,失去“亮點”。
這樣通過章前問題教學,學生明白了數學就是學習,研究和應用數學模型,同時培養學生追求新方法的意識及參與實踐的意識。因此,要重視章前問題的教學,還可據市場經濟的建設與發展的需要及學生實踐活動中發現的問題,補充一些實例,強化這方面的教學,使學生在日常生活及學習中重視數學,培養學生數學建模意識。
2.通過幾何、三角形測量問題和列方程解應用題的教學滲透數學建模的思想與思維過程。
學習幾何、三角的測量問題,使學生多方面全方位地感受數學建模思想,讓學生認識更多現在數學模型,鞏固數學建模思維過程、教學中對學生展示建模的如下過程:
現實原型問題
數學模型
數學抽象
簡化原則
演算推理
現實原型問題的解
數學模型的解
反映性原則
返回解釋
列方程解應用題體現了在數學建模思維過程,要據所掌握的信息和背景材料,對問題加以變形,使其簡單化,以利于解答的思想。且解題過程中重要的步驟是據題意更出方程,從而使學生明白,數學建模過程的重點及難點就是據實際問題特點,通過觀察、類比、歸納、分析、概括等基本思想,聯想現成的數學模型或變換問題構造新的數學模型來解決問題。如利息(復利)的數列模型、利潤計算的方程模型決策問題的函數模型以及不等式模型等。
3.結合各章研究性課題的學習,培養學生建立數學模型的能力,拓展數學建模形式的多樣性式與活潑性。
高中新大綱要求每學期至少安排一個研究性課題,就是為了培養學生的數學建模能力,如“數列”章中的“分期付款問題”、“平面向是‘章中’向量在物理中的應用”等,同時,還可設計類似利潤調查、洽談、采購、銷售等問題。設計了如下研究性問題。
例1根據下表給出的數據資料,確定該國人口增長規律,預測該國2000年的人口數。
時間(年份) 1910 1920 1930 1940 1950 1960 1970 1980 1990
人中數(百萬) 39 50 63 76 92 106 123 132 145
分析:這是一個確定人口增長模型的問題,為使問題簡化,應作如下假設:(1)該國的政治、經濟、社會環境穩定;(2)該國的人口增長數由人口的生育,死亡引起;(3)人口數量化是連續的。基于上述假設,我們認為人口數量是時間函數。建模思路是根據給出的數據資料繪出散點圖,然后尋找一條直線或曲線,使它們盡可能與這些散點吻合,該直線或曲線就被認為近似地描述了該國人口增長規律,從而進一步作出預測。
通過上題的研究,既復習鞏固了函數知識更培養了學生的數學建模能力和實踐能力及創新意識。在日常教學中注意訓練學生用數學模型來解決現實生活問題;培養學生做生活的有心人及生活中“數”意識和觀察實踐能力,如記住一些常用及常見的數據,如:人行車、自行車的速度,自己的身高、體重等。利用學校條件,組織學生到操場進行實習活動,活動一結束,就回課堂把實際問題化成相應的數學模型來解決。如:推鉛球的角度與距離關系;全班同學手拉手圍成矩形圈,怎樣圍使圍成的面積最大等,用磚塊搭成多米諾牌骨等。
四、培養學生的其他能力,完善數學建模思想。
由于數學模型這一思想方法幾乎貫穿于整個中小學數學學習過程之中,小學解算術運用題中學建立函數表達式及解析幾何里的軌跡方程等都孕育著數學模型的思想方法,熟練掌握和運用這種方法,是培養學生運用數學分析問題、解決問題能力的關鍵,我認為這就要求培養學生以下幾點能力,才能更好的完善數學建模思想:
(1)理解實際問題的能力;
(2)洞察能力,即關于抓住系統要點的能力;
(3)抽象分析問題的能力;
(4)“翻譯”能力,即把經過一生抽象、簡化的實際問題用數學的語文符號表達出來,形成數學模型的能力和對應用數學方法進行推演或計算得到注結果能自然語言表達出來的能力;
(5)運用數學知識的能力;
(6)通過實際加以檢驗的能力。
只有各方面能力加強了,才能對一些知識觸類旁通,舉一反三,化繁為簡,如下例就要用到各種能力,才能順利解出。
例2:解方程組
x+y+z=1 (1)
x2+y2+z2=1/3 (2)
x3+y3+z3=1/9 (3)
分析:本題若用常規解法求相當繁難,仔細觀察題設條件,挖掘隱含信息,聯想各種知識,即可構造各種等價數學模型解之。
方程模型:方程(1)表示三根之和由(1)(2)不難得到兩兩之積的和(XY+YZ+ZX)=1/3,再由(3)又可將三根之積(XYZ=1/27),由韋達定理,可構造一個一元三次方程模型。(4)x,y,z 恰好是其三個根
t3-t2+1/3t-1/27=0 (4)
函數模型:
由(1)(2)知若以xz(x+y+z)為一次項系數,(x2+y2+z2)為常數項,則以3=(12+12+12)為二次項系數的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2為完全平方函數3(t-1/3)2,從而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也適合(3)
平面解析模型
方程(1)(2)有實數解的充要條件是直線x+y=1-z與圓x2+y2=1/3-z2有公共點后者有公共點的充要條件是圓心(O、O)到直線x+y的距離不大于半徑。
總之,只要教師在教學中通過自學出現的實際的問題,根據當地及學生的實際,使數學知識與生活、生產實際聯系起來,就能增強學生應用數學模型解決實際問題的意識,從而提高學生的創新意識與實踐能力。
數學建模隨著人類的進步,科技的發展和社會的日趨數字化,應用領域越來越廣泛,人們身邊的數學內容越來越豐富。強調數學應用及培養應用數學意識對推動素質教育的實施意義十分巨大。數學建模在數學教育中的地位被提到了新的高度,通過數學建模解數學應用題,提高學生的綜合素質。本文將結合數學應用題的特點,把怎樣利用數學建模解好數學應用問題進行剖析,希望得到同仁的幫助和指正。
一、數學應用題的特點
我們常把來源于客觀世界的實際,具有實際意義或實際背景,要通過數學建模的方法將問題轉化為數學形式表示,從而獲得解決的一類數學問題叫做數學應用題。數學應用題具有如下特點:
第一、數學應用題的本身具有實際意義或實際背景。這里的實際是指生產實際、社會實際、生活實際等現實世界的各個方面的實際。如與課本知識密切聯系的源于實際生活的應用題;與模向學科知識網絡交匯點有聯系的應用題;與現代科技發展、社會市場經濟、環境保護、實事政治等有關的應用題等。
第二、數學應用題的求解需要采用數學建模的方法,使所求問題數學化,即將問題轉化成數學形式來表示后再求解。
第三、數學應用題涉及的知識點多。是對綜合運用數學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關,很難將問題正確解答。
第四、數學應用題的命題沒有固定的模式或類別。往往是一種新穎的實際背景,難于進行題型模式訓練,用“題海戰術”無法解決變化多端的實際問題。必須依靠真實的能力來解題,對綜合能力的考查更具真實、有效性。因此它具有廣闊的發展空間和潛力。
二、數學應用題如何建模
建立數學模型是解數學應用題的關鍵,如何建立數學模型可分為以下幾個層次:
第一層次:直接建模。
根據題設條件,套用現成的數學公式、定理等數學模型,注解圖為:
將題材設條件翻譯
成數學表示形式
應用題 審題 題設條件代入數學模型 求解
選定可直接運用的
數學模型
第二層次:直接建模。可利用現成的數學模型,但必須概括這個數學模型,對應用題進行分析,然后確定解題所需要的具體數學模型或數學模型中所需數學量需進一步求出,然后才能使用現有數學模型。
第三層次:多重建模。對復雜的關系進行提煉加工,忽略次要因素,建立若干個數學模型方能解決問題。
第四層次:假設建模。要進行分析、加工和作出假設,然后才能建立數學模型。如研究十字路口車流量問題,假設車流平穩,沒有突發事件等才能建模。
三、建立數學模型應具備的能力
從實際問題中建立數學模型,解決數學問題從而解決實際問題,這一數學全過程的教學關鍵是建立數學模型,數學建模能力的強弱,直接關系到數學應用題的解題質量,同時也體現一個學生的綜合能力。
3.1提高分析、理解、閱讀能力。
閱讀理解能力是數學建模的前提,數學應用題一般都創設一個新的背景,也針對問題本身使用一些專門術語,并給出即時定義。如1999年高考題第22題給出冷軋鋼帶的過程敘述,給出了“減薄率”這一專門術語,并給出了即時定義,能否深刻理解,反映了自身綜合素質,這種理解能力直接影響數學建模質量。
3.2強化將文字語言敘述轉譯成數學符號語言的能力。
將數學應用題中所有表示數量關系的文字、圖象語言翻譯成數學符號語言即數、式子、方程、不等式、函數等,這種譯釋能力是數學建成模的基礎性工作。
例如:一種產品原來的成本為a元,在今后幾年內,計劃使成本平均每一年比上一年降低p%,經過五年后的成本為多少?
將題中給出的文字翻譯成符號語言,成本y=a(1-p%)5
3.3增強選擇數學模型的能力。
選擇數學模型是數學能力的反映。數學模型的建立有多種方法,怎樣選擇一個最佳的模型,體現數學能力的強弱。建立數學模型主要涉及到方程、函數、不等式、數列通項公式、求和公式、曲線方程等類型。結合教學內容,以函數建模為例,以下實際問題所選擇的數學模型列表:
函數建模類型 實際問題
一次函數 成本、利潤、銷售收入等
二次函數 優化問題、用料最省問題、造價最低、利潤最大等
冪函數、指數函數、對數函數 細胞分裂、生物繁殖等
三角函數 測量、交流量、力學問題等
3.4加強數學運算能力。
數學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數學運算推理能力是使數學建模正確求解的關鍵所在,忽視運算能力,特別是計算能力的培養,只重視推理過程,不重視計算過程的做法是不可取的。
利用數學建模解數學應用題對于多角度、多層次、多側面思考問題,培養學生發散思維能力是很有益的,是提高學生素質,進行素質教育的一條有效途徑。同時數學建模的應用也是科學實踐,有利于實踐能力的培養,是實施素質教育所必須的,需要引起教育工作者的足夠重視。
你的串號我已經記下,采納后我會幫你制作